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2 Figure 1: Overview. AMPLIFY decomposes policy learning into forward and inverse dynamics, using latent
keypoint motion as an intermediate representation. The forward model can be trained on any video data, while
the inverse model can be trained any interaction data. In contrast with behavior cloning (BC), AMPLIFY requires
fewer demos, can generalize to tasks for which we have zero action data, and learn from human videos.

Abstract:3

Action-labeled data for robotics is scarce and expensive, limiting the generalization4

of learned policies. In contrast, vast amounts of action-free video data are readily5

available, but translating these observations into effective policies remains a chal-6

lenge. We introduce AMPLIFY, a novel framework that leverages large-scale video7

data by encoding visual dynamics into compact, discrete motion tokens derived8

from keypoint trajectories. Our modular approach separates visual motion pre-9

diction from action inference, decoupling the challenges of learning what motion10

defines a task from how robots can perform it. We train a forward dynamics model11

on abundant action-free videos and an inverse dynamics model on a limited set12

of action-labeled examples, allowing for independent scaling. Extensive evalua-13

tions demonstrate that the learned dynamics are both accurate—achieving up to14

3.7× better MSE and over 2.5× better pixel prediction accuracy compared to prior15

approaches—and broadly useful. In downstream policy learning, our dynamics16

predictions enable a 1.2-2.2× improvement in low-data regimes, a 1.4× average im-17

provement by learning from action-free human videos, and the first generalization18

to LIBERO tasks from zero in-distribution action data. Beyond robotic control,19

we find the dynamics learned by AMPLIFY to be a versatile latent world model,20

enhancing video prediction quality. Our results present a novel paradigm leveraging21

heterogeneous data sources to build efficient, generalizable world models. More22

information can be found at amplify-robotics.github.io.23

Keywords: Behavior Cloning, Video Understanding, Dynamics Modeling24

Submitted to the 9th Conference on Robot Learning (CoRL 2025). Do not distribute.

https://amplify-robotics.github.io/


1 Introduction25

Recent successes in harnessing internet-scale data to train image and language foundation models [1,26

2, 3, 4, 5, 6] have spurred an analogous push in robotics. In contrast with earlier methods that27

focused on achieving expert-level capabilities in narrow, controlled domains, recent efforts in robotics28

have aimed to generalize across tasks, object categories, object instances, environments, and the29

abundant variety of conditions present in the natural world [7, 8, 9, 10, 11, 12]. However, in order30

to train such generalist models, the typical behavior cloning (BC) approach requires prohibitively31

large amounts of action-labeled expert demonstrations. Datasets that are considered large-scale32

for robotics [7, 9, 13] take weeks or months to collect a few hundred hours of interaction data,33

falling far short of the roughly one billion hours of video data available on the internet. Therefore,34

methods that incorporate large-scale pre-training on these more abundant modalities tend to generalize35

better from limited action data [14, 15, 8]. Videos, in particular, contain rich priors on temporally-36

extended dynamics, behaviors, and semantics, which can be used to learn a predictive model of the37

world [16, 17, 18, 19, 20, 21, 22, 23]38

Prior work has leveraged video pre-training to learn representations using a number of auxiliary39

tasks such as reward and value prediction [24, 25, 26, 27] or time-contrastive loss terms [24, 28, 29].40

While useful as representations, these methods only learn an encoder for static observations and do41

not explicitly model sequential dynamics. In contrast, model-based approaches can improve sample42

efficiency by separating the challenge of policy learning from learning dynamics [30]. Since videos43

contain rich priors over object and agent dynamics, model-based methods offer a promising avenue44

for learning from limited action data. One such approach is to train a full video prediction model to45

capture visual dynamics, which can act as a reference generator for downstream policies [16, 31].46

However, predicting in pixel space is computationally intensive and costly to run at high frequencies,47

forcing these methods to make compromises like open-loop control [16] or partial denoising [31].48

As a result, a number of works have aimed to learn latent action representations from videos using49

next-frame prediction [32, 33, 34] or latent consistency [35], efficiently modeling features that are50

predictive of the future. While this avoids high inference costs, these representations are still trained51

on image reconstruction/prediction objectives, capturing textural details or visually salient features52

that may not be relevant to policy learning.53

Motivated by the desire to capture motion rather than appearance, optical flow and keypoint tracking54

have emerged as appealing abstractions for extracting action information from videos without action55

labels. Recent advances in computer vision have enabled efficient and precise pixel-level point56

tracking, even through occlusions and limited out-of-frame tracking [36, 37, 38, 39]. As these57

capabilities enable fine-grained capture of motion and scene dynamics, they have found applications58

in robotics for visual imitation learning [40] and tool use [41]. A number of prior works predict59

motion from images as optical flow [42, 43, 44] or by modeling the trajectories of specified keypoints60

[45, 46, 47, 48, 49, 50, 51]. However, many of these works still rely on prohibitively expensive video61

prediction models [51, 52, 44], object-centric mask extraction [51, 49, 47, 53], calibrated cameras62

[50], or inefficient online planning [48], limiting their generality.63

Two of the most general keypoint modeling approaches are ATM [54] and Track2Act [53], which64

aim to learn a universal keypoint dynamics model to predict the future trajectories of arbitrary points65

in an image, and condition a policy on these predictions. However, Track2Act relies on the often66

unrealistic assumption of a goal image and restricts its output space to single-object rigid-body67

transformations. ATM, while more flexible in its representation, relies on unrealistic point-sampling68

heuristics during training that cannot be replicated during inference. In addition, neither ATM nor69

Track2Act learn a latent space abstraction of keypoints, leaving them with high computational costs70

much like pixel-space video generation and potentially hindering generalization. Due to their high71

computational costs, Track2Act requires open-loop trajectory generation, and ATM only generates72

tracks for 32 points during policy inference, resulting in very coarse dynamics predictions. Further73

discussion and comparison to related work can be found in Appendix C.74

In this paper, we investigate the use of latent keypoint motion as an abstraction for learning valuable75

action priors from action-free video data, combining the benefits of latent dynamics prediction with76
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(a) Motion Tokenization
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(b) Forward Dynamics
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Figure 2: Architecture. AMPLIFY consists of a three-stage decomposition: (a) keypoint tracks are compressed
into a discrete latent space using FSQ. For each timestep and each point, the decoder outputs a distribution in a
local window centered around each point to reconstruct the instantaneous velocities, (b) a forward dynamics
model is trained to predict the latent codes for the next T timesteps given an input image and task description,
and (c) an inverse dynamics model decodes predicted track tokens into an action chunk.

the explicit motion information captured in keypoint trajectories. We propose AMPLIFY: Actionless77

Motion Priors for Learning Inverse and Forward Dynamics, a three-stage framework that flexibly78

decouples dynamics modeling from policy learning. First, we learn a compact latent space for79

modeling the motion of a dense grid of keypoints. Second, we train a latent dynamics model to80

predict a sequence of latent motions based on the current observation. Finally, an inverse dynamics81

model learns to map predicted latent motions to low-level robot actions for execution. Notably,82

this modular approach allows the first two stages to be trained on any video data, while the inverse83

dynamics policy can be trained on any interaction data (Figure 1). We show that this has profound84

implications for policy generalization in Section 3.2.85

Through extensive real-world and simulated experiments, we evaluate both the accuracy and down-86

stream utility of our latent dynamics model. Compared to state-of-the-art baselines, we observe87

that AMPLIFY leads to improved keypoint trajectory prediction, lowering mean-squared error by88

over 3×. We then demonstrate that these predictions are useful for control; conditioning the inverse89

dynamics policy on latent motions is a valuable prior that allows for more data-efficient learning and90

generalization to tasks for which we have no action-labeled data. Finally, we examine the versatility91

of our motion-based representations beyond control for tasks such as conditional video prediction.92

In summary, we make the following key contributions:93

1. We present the first latent keypoint dynamics model and investigate crucial design choices.94

2. We demonstrate state-of-the-art keypoint prediction accuracy on three large-scale video datasets.95

3. We train a data-efficient and generalizable policy that can learn from action-free human data.96

4. We apply latent motions to conditional video generation, outperforming previous baselines.97

2 AMPLIFY: Method98

Problem Setup – We assume access to two types of data: a video dataset V = {(ot, g)} and a dataset99

of robot interaction data R = {(ot, qt, at)} where o ∈ O are RGB image observations, g ∈ G is100

a goal (e.g., a language description), and a ∈ A, q ∈ Q are the action and proprioceptive state101

of the robot, respectively1. Given these datasets, our aim is to learn the parameters of a visual102

1V and R need not be disjoint in general, and any goal-directed interaction data (demonstrations) may be
included in both V and R. However, V may additionally contain non-robot videos and R may contain undirected
action data such as exploration or play data.
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control policy π : O × Q × G → P(A) = finv(ot, qt, f(ot, g)) composed of a forward dynamics103

model f : O × G → Z that learns a motion prior in a latent space Z and an inverse dynamics104

model finv : O ×Q×Z → A that maps the latent motion to a sequence of actions. Crucially, this105

decomposition allows for independent scaling of f and finv by training on V and R, respectively. We106

provide an extended discussion of the benefits of this decomposition in Appendix B. The following107

sections detail preprocessing (Sec. 2.1), learning the latent motion representation (Sec. 2.2), and108

training the forward (Sec. 2.3) and inverse (Sec. 2.4) dynamics models.109

2.1 Preprocessing Keypoint Tracks110

We first augment V → V ′ = {(ot, κt, g)} in a preprocessing step using the off-the-shelf point tracking111

model from [36] to obtain a set of keypoint tracks κt ∈ RT×N×2 for each timestep t. More precisely,112

we initialize a 20×20 uniform grid of N = 400 points in each image ot, then track the points through113

the next T = 16 frames ot:t+T , capturing their 2-dimensional pixel coordinates. Although extracting114

specific task-relevant keypoints could potentially yield more informative predictions, we favor the115

uniform grid for its simplicity and generality, similar to [53], and find that it works effectively to116

model a variety of motions. Other works have attempted to select key points according to heuristics117

such as movement throughout the video [54], but we found that this led the model to learn spurious118

correlations and relies on unrealistic assumptions at test time. By reinitializing the grid of keypoints119

in each frame, we ensure no points are occluded and guarantee consistent coverage throughout every120

frame, even with moving cameras. See Appendix D.4 for further details on preprocessing.121

2.2 Motion Tokenization122

Unlike prior keypoint-based methods which predict directly in pixel space [54, 53, 48, 51], we123

argue that learning to predict dynamics in a compressed latent space enables a more efficient and124

generalizable representation, similar to findings in model-based reinforcement learning [55, 56, 57].125

To this end, we learn a compact discrete latent space from pre-processed keypoint trajectories126

using Finite Scalar Quantization (FSQ) [58], a drop-in replacement for vector-quantized variational127

autoencoders (VQ-VAEs) [59]. FSQ employs an implicit codebook and a single reconstruction loss128

term, avoiding representation collapse and resulting in better codebook utilization.129

Figure 2a illustrates our tokenization scheme. We compute single-step velocities ut ∈ R(T−1)×N×2130

from the pre-processed keypoint trajectories κt. Then, a keypoint encoder Eθ : R(T−1)×N×2 → Rb×d131

maps ut to a d-length sequence z̃t of latent vectors z̃t,i ∈ Rb, which are quantized via FSQ to132

a sequence zt ∈ Zb×d of discrete codes, and decoded by the keypoint decoder Dθ : Rb×d →133

R(T−1)×N×W 2

for reconstruction. Rather than just predicting the 2-dimensional pixel coordinate134

of each point directly, the decoder outputs a categorical distribution over W 2 classes representing a135

local W ×W window of motions centered at the same point in the previous timestep. This imposes136

an inductive bias on the model toward next-keypoint predictions that are close to locations in the137

current timestep, and additionally better captures multimodal distributions compared to performing138

regression on the coordinates. The keypoint encoder has a causally-masked transformer encoder139

architecture, and the keypoint decoder is an unmasked transformer decoder that cross-attends between140

a sequence of N learned positional encodings and the quantized codes from the encoder. The encoder141

and decoder are jointly trained on V using a cross-entropy loss:142

LAE(θ) = CE
(
Dθ

(
h(Eθ(ut))

)
, ωt

)
(1)

where ωt = Ω(ut), Ω : R(T−1)×N×2 → R(T−1)×N×W 2

maps ground-truth velocity vectors to143

their corresponding class based on the displacement in the local W × W window, and h is the144

FSQ discretization function. When available, multi-view inputs are tokenized together into a single145

sequence of codes. For simplicity, we do not include the view dimension in our notation. For ablations146

and an extended discussion on the effects of these design choices, we refer readers to Appendix E.147

2.3 Forward Dynamics (Actionless Motion Prior)148

After training the motion tokenizer, we train an autoregressive transformer f(ot, g) to predict the149

tokenized motion sequence zt corresponding to the video ot:t+T based on the current observation150

and task description. Image observations are encoded and projected into the embedding space of the151
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Figure 3: Decoded keypoint trajectory predictions from AMPLIFY. Zero-movement points are not shown.

transformer using the flattened feature map from a pre-trained ResNet-18 [60] to generate 7× 7 = 49152

vision tokens per image. The summary token from a T5 [61] text embedding of the task description153

is used to tokenize language inputs. These conditioning tokens are then concatenated with a start of154

sequence (SOS) token and the latent motion tokens to predict the next tokens in the sequence (Figure155

2b). A block-causal attention mask is used, where the conditioning part of the sequence is non-causal156

and the motion tokens are causally masked. We use a cross-entropy loss on the predicted codes157

without decoding to full keypoint trajectories, and only back-propagate gradients to the dynamics158

model while the tokenizer remains frozen (Equation 2). sg refers to the stop-gradient operator.159

Lforward = CE
(
f(ot, g),sg(Eθ(ut))

)
(2)

160 2.4 Inverse Dynamics161

Finally, we learn an inverse dynamics model finv(ot, qt, zt) that decodes latent motion tokens into a162

distribution over action chunks at = at:t+T , as shown in Figure 2c. Importantly, this module is not163

conditioned on the goal and instead acts as a general reference follower trained on any interaction164

data R. The model uses a transformer decoder with a sequence of learned tokens that cross-attend165

to image tokens, a linear projection of proprioceptive state, and codes from the motion tokenizer to166

produce a sequence of d action tokens. These action tokens are fed into an action head to output a167

distribution over length-T action chunks. Following BAKU [62], we opt for an isotropic Gaussian168

prior on the action distribution. In Appendix E, we discuss alternative choices for the action head.169

The inverse dynamics model is trained with a negative log-likelihood (NLL) loss with a temporal170

discount γ to reduce the impact of inaccurate predictions towards the end of the sequence.171

Linv = −
t+T−1∑
τ=t

γτ−t · log p (aτ | µτ−t, στ−t) (3)

where µτ−t = fµ
inv(ot, qt, zt)[τ−t] and στ−t = exp(fσ

inv(ot, qt, zt)[τ−t]) are the predicted mean and172

standard deviation. The inverse dynamics model can be trained on ground truth tokens zt = Eθ(ut),173

but in practice, we fine-tune the action decoder on the predicted outputs ẑt of the forward dynamics174

model. Both the motion tokenizer and the forward dynamics model are frozen for this stage. The175

keypoint decoder Dθ is not used, as we condition finv on latent motions rather than decoded tracks.176

2.5 Inference177

During inference, the forward dynamics model takes the current observation and task description at178

each timestep t and autoregressively predicts a sequence of latent motion tokens ẑt = f(ot, g). The179

inverse dynamics model then decodes these tokens, along with image and proprioception tokens, into180

an action chunk at = finv(ot, qt, ẑt). Following ACT [63], we use temporal ensembling to aggregate181

information over previously predicted action chunks using the same temporal discount γ.182

3 Experiments183

We evaluate AMPLIFY guided by two main axes of investigation: quality of dynamics prediction184

(Sec. 3.1) and utility of predictions for downstream tasks, including policy learning (Sec. 3.2) and185

conditional video generation (Sec. 3.3). See Appendix D for extended details on all experiments.186

3.1 Quality of Forward Dynamics Prediction187

We test the prediction accuracy of our forward dynamics model on a combination of three simulated188

and real-world video datasets, including both human and robot data: BridgeData v2 [64], a large-scale189

robot dataset consisting of over 60k real-world rollouts of diverse manipulation tasks in 24 different190
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Policy Learning Forward Inverse BC
Experiment Dynamics Dynamics Baselines

In-Distribution VR
id Rid Rid

Few-Shot VR
id ⊆ Rid ⊆ Rid

Cross-Embodiment VR
id ∪ VH

id Rid Rid

Generalization VR
id ∪ VR

ood Rood Rood

Table 1: Training dataset setup for each
component by experiment. Subscript id
and ood indicate in-distribution and out of
distribution tasks and superscript H and R
distinguish human and robot video data. ⊆
indicates training on limited subsets of the
data.

Table 2: Prediction. AMPLIFY achieves 3.7× better MSE and 2.5× better pixel accuracy compared to ATM, and
a 4-6% improvement over Track2Act, which uses a goal image, and Seer, which requires full video prediction.

Method LIBERO BridgeDatav2 Something-Something v2

Metric MSE ↓ ∆AUC ↑ Pixel Acc. ↑ ∆AUC ↑ ∆AUC ↑
ATM [54] 0.022 0.767 0.250 – –
Track2Act [53] – – – 0.770 0.700
Seer [67] – – – 0.914 –
AMPLIFY 0.006 0.913 0.629 0.968 0.725

Table 3: Behavior Cloning performance on LIBERO. AMPLIFY is competitive with various state-of-the-art
baselines, both with and without video pretraining.

Method Video LIBERO LIBERO LIBERO LIBERO LIBERO
Pre-training Long 90 Object Spatial Goal

Diffusion Policy [68] ✗ 0.73 0.67 0.70 0.79 0.83
QueST [69] ✗ 0.67 0.89 – – –
BAKU [62] ✗ 0.86 0.90 – – –
AMPLIFY (Inverse only) ✗ 0.76 0.83 0.64 0.83 0.92

UniPi [16] ✓ 0.06 – 0.60 0.69 0.12
ATM [54] ✓ 0.44 0.63 0.81 0.79 0.59
AMPLIFY (Full) ✓ 0.75 0.88 0.93 0.73 0.92

environments; Something-Something v2 [65], a video dataset consisting of over 220,000 videos191

of humans performing everyday manipulation tasks with a variety of objects and primitive motion192

categories; and LIBERO [66], a benchmark of 130 diverse simulated robotic manipulation tasks,193

from which we use the observations from 6500 demonstration rollouts as a video dataset.194

We compare to ATM [54] and Track2Act [53], two state-of-the-art keypoint trajectory prediction195

approaches. In addition, on BridgeData v2 we compare track prediction accuracy to a baseline of first196

predicting videos with Seer [67], then applying CoTracker [36] to the initial set of points and tracking197

through the generated videos. Since our forward dynamics model predicts in latent space, we use198

the decoder from the Motion Tokenization stage for fair comparison in pixel space. We measure199

performance on normalized tracks (κ ∈ [−1, 1]) using Mean Squared Error (MSE), Pixel-Wise200

Accuracy (Pixel Acc.), and a metric ∆AUC originally used by point tracking methods [38, 36], and201

later used for track point prediction by Track2Act. See Appendix D.3 for further details on metrics.202

Results are summarized in Table 2, demonstrating that AMPLIFY consistently leads to more accurate203

predictions, even though the forward dynamics model is only trained on a latent consistency loss204

rather than pixel-space prediction objectives. On the LIBERO dataset, we achieve over twice the205

pixel-wise accuracy of ATM, and we outperform Track2Act (which, unlike our method, has access206

to goal images) on their chosen ∆AUC metric across BridgeData v2 and Something-Something v2.207

We attribute this success to several design choices, including the compression of motion into a208

compact latent space, thus improving efficiency and generalization; the prediction of discrete tokens209

to leverage the expressive power of autoregressive transformers; and the use of local-window pixel210

space classification, which gives our forward dynamics model the ability to model rich multi-modal211

distributions of motion and capture fine-grained dynamics. Further investigation into design choices212

(E), detailed results (F.2), and qualitative visualizations (F.3) can be found in the Appendix.213

3.2 Utility of Predicted Latent Motions for Policy Learning214

Beyond prediction accuracy, we examine whether video pre-training using AMPLIFY can provide215

a useful prior for policy learning in both real-world and simulated experiments. Specifically, we216
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Figure 4: LIBERO few-shot. Comparison of AMPLIFY against ATM [54] and a no-video-pre-training baseline.
Our forward model is trained on all videos, and the inverse model is only trained on a limited number of demos.

evaluate AMPLIFY along four dimensions measuring (1) in-distribution performance, (2) few-shot217

learning, (3) cross-embodiment transfer, and (4) generalization. Table 1 summarizes the training218

datasets for different stages under each experimental setup. We evaluate performance using success219

rates on all five subsets of LIBERO, as well as a set of 3 real-world tasks: "Put the Rubik’s Cube on220

the Box" (Place Cube), "Stack the Green and Blue Cups in the Orange Cup" (Stack Cups),221

and "Open the Box and Move the Eggplant into the Bowl" (Open Box & Place Eggplant)).222

In-Distribution Performance – We first evaluate AMPLIFY in a standard behavior cloning setup,223

training both the forward and inverse dynamics models on only the demonstration data. We compare224

to state-of-the-art approaches with and without video pre-training. Results in Table 3 indicate that225

AMPLIFY, even without additional data, is competitive with SOTA behavior cloning methods and226

outperforms video pre-training methods trained with (ATM) and without (UniPi) keypoint tracks.227

In this setting, we observe that since there is sufficient information to learn tasks to a high degree228

without video pre-training, standard BC methods tend to match or outperform approaches using229

pre-training. However, in subsequent sections, we demonstrate that these approaches under-perform230

in limited data regimes and do not generalize effectively to new tasks.231

Few-Shot Learning – We study whether AMPLIFY can learn from fewer action-labeled demonstrations232

by training the forward model on all videos, while the inverse model is only trained on 4%, 10%,233

or 20% of the 50 demonstrations available for each of the subsets of LIBERO. In Figure 4, we234

compare AMPLIFY with ATM, trained on all videos and the same subsets of action data, as well as235

a variant of AMPLIFY that does not condition on motion tokens to predict actions. Both AMPLIFY236

and ATM consistently outperform the no-pre-training variant, indicating that in low-data regimes,237

video pre-training on keypoint dynamics provides a strong prior for data-efficient policy learning.238

In addition, AMPLIFY achieves stronger performance than ATM on nearly every subset, suggesting239

that a latent motion representation has higher utility for action prediction than conditioning the240

policy directly on pixel-space track predictions. This seems to be especially true at the extreme241

low end–when provided with only 2 demonstrations per task, AMPLIFY achieves an average 1.94×242

improvement over ATM. Full numerical results are included in Table 16.243

Cross-Embodiment Transfer – Since the forward dynamics model can be trained on any observation244

data, we study whether videos of humans demonstrating a task can be used to improve policy learning.245

We train the forward dynamics model on both human and robot video data, while the inverse dynamics246

model is trained only on the action-labeled robot data. This setup highlights how the two stages can247

be decoupled to scale independently, unlike BC methods that cannot effectively harness action-free248

data. We evaluate success rates on three real-world tasks of varying difficulty, using Diffusion Policy249

as the BC baseline. For fair comparison, we replace the Gaussian head used in other experiments with250

a Diffusion Policy head in the inverse dynamics model. This ensures that the only difference between251

the two approaches is whether the predictions from our forward dynamics model are used to condition252

the policy. Similarly to the previous section, we evaluate AMPLIFY in both the few-shot setting and253

the full demonstration setting. Results in Table 4 demonstrate that AMPLIFY can effectively leverage254

Method Place Cube Stack Cups Box/Eggplant Avg.

# Demos 5 10 All 5 10 All 5 10 All

Diffusion Policy [68] 0.6 0.5 0.9 0.3 0.5 0.5 0.1 0.2 0.2 0.42
AMPLIFY (DP head) 0.7 0.9 0.9 0.3 0.6 1.0 0.1 0.3 0.4 0.58

Table 4: Cross-Embodiment Trans-
fer. By leveraging human video
demonstrations to train the forward dy-
namics model, AMPLIFY outperforms
Diffusion Policy on real-world tasks.
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Method LIBERO
Long

LIBERO
Object

LIBERO
Spatial

LIBERO
Goal

Diffusion Policy [68] 0.00 0.00 0.00 0.00
QueST [69] 0.07 0.00 0.01 0.01
BAKU [62] 0.06 0.00 0.00 0.00
AMPLIFY (w/o tracks) 0.00 0.00 0.00 0.02
AMPLIFY 0.52 0.80 0.69 0.41

Table 5: Zero-shot task generalization
from LIBERO 90 to unseen LIBERO sub-
sets. We are the first to report non-trivial
success on LIBERO without using any ac-
tion data from the target tasks. Compared to
the best BC baseline, AMPLIFY provides a
27× average improvement.

additional human data to learn common dynamics between human and robot motions, and use the255

predicted latent motions to improve policy learning. The average improvements of 1.32×, 1.4×, and256

1.5× indicate a more prominent gap as task complexity increases. See Table 17 for complete results.257

Generalization – Observing that AMPLIFY excels in learning from limited action data, we now turn258

to a setting where no action data is available for target tasks. Given only observations of target tasks,259

as well as a dataset of out-of-distribution interaction data, we evaluate how well AMPLIFY can solve260

the target tasks zero-shot. This challenging setting requires methods to both learn a good abstraction261

of the mapping from observations to actions, and also generalize that abstraction to predict correct262

actions on new tasks. To test this setting, we train the forward dynamics model on observations from263

all subsets of LIBERO, and train the inverse dynamics model and BC baselines on actions from264

only LIBERO 90. We then evaluate on four LIBERO target suites (Long, Object, Spatial, Goal),265

specifically designed to test different categories of generalization [66]. We find that BC methods266

completely fail in this scenario, achieving near-zero success rates (Table 5). We attribute this failure267

to two main shortcomings of BC: (1) the supervised imitation objective has no incentive to learn a268

generalizable abstraction, and (2) BC has no mechanism for harnessing additional data that may be269

informative, such as videos. In contrast, AMPLIFY attains an average 60.5% success rate on target270

tasks, approaching the success rates of models that were directly trained on the target tasks. This271

success highlights the value of latent dynamics prediction as a versatile interface for learning general272

priors from action-free videos. In addition, it suggests that training a general reference following273

inverse dynamics model may be a more generalizable objective compared to imitation learning.274

3.3 Utility of Predicted Latent Motions for Conditional Video Generation275

To demonstrate the utility of predicting keypoint trajectories beyond robotic control, we condition276

a video prediction model [44] on the latent motion tokens predicted by our forward dynamics277

model. We find that conditioning a video prediction model on our latent motion tokens leads to278

improved generation quality (Table 6). Compared to a baseline model that does not use track inputs,279

our approach yields better performance on all metrics (details on metrics in Appendix D.3). This280

improvement suggests that our latent motion representation captures rich, structured dynamics that281

improve not only control tasks but also the fidelity of generated video content. Further details on282

training and generation are provided in Appendix D.5 and qualitative results in Appendix F.3.283

Method PSNR ↑ LPIPS ↑ SSIM ↑
AVDC [44] 15.93 0.16 0.56
AVDC + AMPLIFY 16.40 0.19 0.59

Table 6: Video Prediction. Conditioning AVDC on
predicted motion tokens from our dynamics model im-
proves generated video quality on BridgeData v2.

4 Conclusion284

In this work, we introduced AMPLIFY, a framework that leverages large-scale action-free video285

data and a small amount of interaction data to significantly enhance robotic policy performance. By286

decoupling the learning of what constitutes a task from how to execute it, our approach efficiently287

utilizes heterogeneous data sources. Our key insight lies in representing scene dynamics through288

compact latent motion tokens derived from keypoint trajectories, which enables higher efficiency289

and improved performance compared to pixel-level reconstruction methods. Experimental results290

show that AMPLIFY consistently outperforms baseline methods, particularly in the limited action data291

regime and in zero-shot generalization settings. Moreover, the versatility of our latent representation292

extends beyond control, proving useful in tasks such as conditional video prediction. Our findings293

demonstrate the promise of harnessing large-scale human video data to inform robotic control policies294

and pave the way for more scalable, generalizable, and efficient robot learning.295
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5 Limitations296

While AMPLIFY is an exciting step towards robot learning from broad data sources, we recognize a297

number of limitations that could serve as promising directions for future research. First, by modeling298

tracks in 2D images, we are potentially leaving ambiguity in the inverse dynamics model if multiple299

actions could correspond to the same tracks. An explicitly 3D approach, predicting latent motions that300

correspond to 3D tracks [39, 70] could yield more robust representations that do not depend on fixed301

or known camera views. In addition, AMPLIFY currently only considers deterministic environment302

dynamics, since in stochastic settings additional information is required to separate agent actions303

from exogenous noise in purely state-to-state data [71, 72, 73]. Since AMPLIFY has demonstrated304

the ability to learn from off-task data, it would also be interesting to explore whether the inverse305

dynamics model could be trained on data collected online by an exploration policy. Finally, future306

research could scale the prediction backbone to a general VLM or video prediction model to enhance307

video and language generalization.308
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Appendix626

In this document, we provide detailed supplementary material including a table summarizing notation627

(A), a discussion on the three-stage decomposition (B), extended related work (C), detailed experi-628

mental and training details (D), ablation studies (E), and additional quantitative (F) and qualitative629

(F.3) results.630

A Notation631

Table 7: Description of the Notation and Acronyms used in this manuscript
Symbol Meaning
ot Image (visual) observation at time t.
qt Proprioceptive state of the robot at time t (e.g., joint angles).
at Action at time t.
g Goal specification (e.g., language instruction or task label).
f Forward dynamics model that autoregressively predicts latent motion tokens from ot and g.
finv Inverse dynamics model mapping latent motion tokens and current state (ot, qt) to a sequence of actions.
π Our policy, defined as finv(ot, qt, f(ot, g)).
V Video dataset {(ot, g)}
R Action-labeled robot interaction dataset {(ot, qt, at)}
κt Raw keypoint trajectories over a horizon from time t, with dimensions T ×N × 2.
ut Single-timestep velocities computed from κt.
z̃t Continuous latent vectors produced by the keypoint encoder.
zt Discrete latent codes (tokens) representing keypoint motion, obtained via FSQ.
Eθ Keypoint encoder that maps velocities ut to latent representations.
Dθ Keypoint decoder that reconstructs velocity distributions from latent codes.
ωt Ground-truth discretized labels for velocities, computed as Ω(ut).
T Prediction horizon (number of timesteps over which motion is predicted).
N Number of keypoints in the grid.
W Local window size for pixel classification in the decoder.
at Action chunk (sequence of actions over the horizon), i.e., at:t+T .
γ Temporal discount factor used in the inverse dynamics loss.

B Discussion on the Three-Stage Decomposition632

One fundamental limitation of Behavior Cloning is that it is a monolithic architecture that requires633

paired (action, observation) data to learn a policy π(ot) = at, which is not readily available at634

scale. Moreover, the data is assumed to be a goal-directed sequence of expert actions–standard635

imitation learning has no mechanism for harnessing interaction data that is suboptimal or not directed636

towards solving the tasks in the test set, even though such data (1) contains rich information about637

the relationship between visual observations, environment dynamics, and agent actions, and (2) may638

be easier to collect through exploration or play, compared to expert demonstrations [74, 75, 76]. In639

Section 3.2, we demonstrate that these limitations prevent BC approaches from learning reusable640

abstractions. Based on these observations, we argue for a decoupled multi-stage approach that can641

learn from heterogeneous data sources. We classify data sources into three distinct categories based642

on their modality composition:643

Action-Free Videos: observations of goal-directed behavior, but no action labels {(ot, g)}644

Undirected Interaction Data: observations and robot actions, but not in a goal-directed manner645

{(ot, qt, at)}646

Expert Robot Demonstrations: goal-directed action-labeled rollouts {(ot, qt, at, g)}647

Note that Expert Demonstrations can be treated as both Action-Free Videos and Interaction Data,648

since the modalities are a strict superset of the modalities in the other two. For this reason, in the649

main body of the paper we simply refer to V and R, with any available demo data included in both650

sets by default. This taxonomy points towards one possible natural decomposition:651

1. Use Action-Free Videos (and Expert Demonstrations) to learn how observations evolve with652

respect to a goal653
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Algorithm 1 AMPLIFY Training.

Require: Datasets V,R
1: Preprocess keypoint tracks κt in V
2: Learn latent motion encoding to compress κt into discrete tokens zt using Eq. 1
3: Train forward dynamics model f(ot, g) = zt on V using Eq. 2
4: Train inverse dynamics model finv(ot, qt, zt) = at:t+T on R using Eq. 3
5: return π(ot, qt, g) = finv(ot, qt, f(ot, g))

2. Use Interaction Data (Undirected and Demonstrations) to learn how a sequence of observations654

maps to a sequence of actions655

This decomposition effectively decouples task understanding (the sequence of observations that656

correspond to a goal) and task execution (translating a reference sequence of states into low-level657

actions). Observations, the only shared modality, operate as the interface bridging the gap, serving as658

prediction targets for the first stage and input references for the second. Seeking a compact, action-659

informative representation of these observations, AMPLIFY employs latent keypoint tokens, providing660

the third component of the three-stage decomposition. However, plenty of other representations661

are possible, including uncompressed images [16] and pixel-space tracks [54, 53]. In Algorithm 1662

we summarize the training procedure for the three-stage approach, and in Table 8 we highlight the663

different data sources used for each component of AMPLIFY in comparison to BC.664

Table 8: Compared to BC, AMPLIFY can leverage video and off-task data by decoupling forward and inverse
dynamics.

Data type BC Forward
Dynamics

Inverse
Dynamics AMPLIFY

Action-Free Videos ✓ ✓
Expert Robot Demonstrations ✓ ✓ ✓ ✓
Undirected Interaction Data ✓ ✓

C Extended Related Work665

In this section we provide context on additional related works and alternative approaches for robot666

learning from videos.667

C.1 Learning from Hand Pose668

Videos have shown to be an effective source of data for learning robotic policies from human669

demonstrations. One method for attaining action labels for unannotated videos is to estimate hand670

pose to gain information about human action. [74, 77, 45] estimate the trajectory of the hand671

position or pose, and then train a policy to replicate these trajectories with a robotic arm. While this672

representation reduces the domain gap, it lacks granularity, as the degrees of freedom represented673

(either 3 or 6 DoF) fall short of capturing the full complexity of the human hand, which possesses674

20-30 DoF.675

The retargeting of human actions to the robot’s action space is another prevalent strategy. This676

has been achieved through various means, including image translation architectures [78] analytical677

remappings to optimize cost functions [79, 80], and masking the agent from the scene [81].678

C.2 Learning from Affordances679

Affordances, or the set of ways in which a given object or environment may be manipulated, are a680

common abstraction between human and robot data that lends itself well to learning from videos. The681

estimation of contact locations, trajectories, and future states are prevalent strategies for interpreting682

and acting upon environmental cues [80, 82, 83]. These methods aim to deduce actionable information683

from video data, and attempt to learn how to interact with various objects and environments based on684

observed human actions.685
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C.3 Reward/Representation Learning from Videos686

A common method of extracting action-relevant information from videos is via self-supervised687

representation learning. Some works align video data with language descriptors via contrastive688

learning [29, 84] or minimize the distance from a specified goal representation [24]. Some works689

extract latent action representations from videos such as [85, 86, 87]. More recently, works such as690

[88, 34, 33] extract latent actions via pixel-level reconstruction and use them to learn from action-free691

videos.692

Representations learned from video and language often serve as the basis for reward or value functions693

in deep reinforcement learning settings, predominantly within goal-conditioned RL frameworks694

[24, 85, 87], where the aim is to produce actions that minimize the distance to the desired outcome.695

Other works such as [89, 90] utilize models trained on objectives such as video prediction to estimate696

values.697

C.4 Forward and Inverse Dynamics for Robot Learning698

AMPLIFY benefits from multiple sources of data by decoupling the problem of policy learning into699

forward and inverse dynamics, where the forward dynamics model predicts future states or latent700

representations, and the inverse dynamics model maps these predictions to actions. [35, 91] focus701

on recovering latent actions from video data using self-supervised pretraining, enabling control702

with minimal action labels. Methods such as [92, 93, 44, 16] use text-guided video generation703

to predict future visual trajectories, from which actions can be inferred. These works present a704

promising direction for transferring information from large-scale video data into visuomotor policies705

using pre-trained foundation and frontier models, thus improving generalization to new tasks and706

environments.707

D Experimental and Training Details708

In this section we provide extensive details on the LIBERO benchmark (D.1), our real-world setup709

(D.2), metrics used for evaluation (D.3), preprocessing (D.4), and training details for each stage (D.5).710

711

D.1 LIBERO Benchmark712

We evaluate on the LIBERO [66] benchmark, which consists of 130 manipulation tasks. The LIBERO713

benchmark is categorized into distinct subsets:714

• LIBERO-Long: A subset of 10 long-horizon manipulation tasks.715

• LIBERO-90: A broad set of 90 tasks with diverse objects, layouts, and backgrounds.716

• LIBERO-Object: Tasks that evaluate generalization to novel object categories.717

• LIBERO-Spatial: Tasks that test generalization across varied spatial arrangements.718

• LIBERO-Goal: Tasks with the same starting scene but different goals to assess goal conditioning.719

Figure 5 shows a sample of the tasks and environments in the collection. The benchmark comes720

with a dataset of 50 expert demonstrations per task, obtained through VR teleoperation [66]. When721

evaluating on LIBERO, AMPLIFY takes in the standard 128× 128 RGB images as obserations and722

produces normalized axis-angle actions. We execute actions in the environment at 20 Hz, and give723

our model a maximum of 500 environment steps to solve each task. We perform rollouts on 10724

random seeds per task for all subsets of LIBERO except for LIBERO-90, for which we only perform725

one rollout for each of the 90 tasks to produce our results.726

D.2 Real-World Setup727

Robot and Camera Setup – In our real-world experiments, we evaluate the performance of our method728

on three distinct manipulation tasks using a UR5 robotic arm equipped with three synchronized729

static RGB camera views positioned on three sides of the workspace (Pictured in Figure 6). This730

multi-view configuration ensures robust perception of the scene. We do not use a wrist camera.731

Camera observations are captured at 60Hz but downsampled to 20Hz to match action inputs on the732
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Figure 5: A sample of the 130 diverse tasks and environment configurations in LIBERO.

2 RGB Corner Cameras

1 RGB Front Camera

Figure 6: We use three static RGB cameras as input observations for both human and robot (UR5) data.
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Figure 7: Real-World Tasks and Cameraviews. Each row shows front and corner camera views for three
different tasks: Task 1: “Put the Rubik’s Cube on the Box”, Task 2: “Stack the Green and Blue Cups in the
Orange Cup”, and Task 3: “Open the Box and Move the Eggplant into the Bowl”.
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robot. Images are cropped and resized to 224 × 224 for all views. Actions are output as absolute733

normalized end-effector positions, which we found to work better than delta pose.734

Task Descriptions and Demonstration Details – To test performance on our real-world setup, we735

evaluate AMPLIFY across three tasks of varying difficulty. Fig 7 shows each task from the 3736

cameraviews, and Table 9 records the number of human/robot demonstrations we collect for each737

task.738

• Task 1: "Put the Rubik’s Cube on the Box" - This is the easiest task, consisting of a single739

pick-and-place movement. We slightly vary the initial placement and orientation of the cube during740

both demonstrations and evaluation.741

• Task 2: "Stack the Green and Blue Cups in the Orange Cup" - This tasks consists of two742

cup-stacking motions, requiring more precise grasping and a longer-horizon rollout. We measure743

both partial and full success rate (stacking one or both cups correctly, invariant of order) and744

report full results in Table 17. Cup placements are also varied slightly during demonstrations and745

evaluations.746

• Task 3: "Open the Box and Move the Eggplant into the Bowl" - This task requires precise747

object articulation (the clearance between the box lid and the table is only a few centimeters),748

continued contact, and then a pick-and-place movement with partial observability. Like Task 2, we749

measure both partial and full success rates (partial for opening the box, full for also placing the750

eggplant in the bowl correctly), also shown in Table 17. We vary the orientation of the eggplant751

and position of the box flap.752

Table 9: Demonstration Counts per Task. Number of robot and human demonstrations collected for each
real-world task.

Task Robot Demos Human Demos

Place Cube 24 48
Stack Cups 13 59
Open Box & Place Eggplant 15 30

Evaluation Criteria – We measure success rates from 10 rollouts on each task for both AMPLIFY753

and the baseline Diffusion Policy, with a time limit of 90 seconds. Partial and full success rates are754

measured as follows:755

Place Cube756

• Partial Success: N/A.757

• Full Success: The Rubik’s cube is safely placed on the box.758

Stack Cups759

• Partial Success: Two out of the three cups are successfully stacked.760

• Full Success: All three cups are correctly stacked.761

Open Box & Place Eggplant762

• Partial Success: The box is opened, regardless of whether the eggplant is picked and placed.763

• Full Success: The robot opens the box and successfully places the eggplant in the bowl.764

D.3 Metrics765

Track Prediction Metrics – We use three main metrics to measure performance in our keypoint766

trajectory (track) prediction experiments: mean squared error (MSE), pixel accuracy, and ∆AUC (Area767

Under Curve). For each, we use tracks obtained from CoTracker [36] as "ground-truth" for predictions.768

All methods use a uniformly spaced 20× 20 grid as initial query points to track. Track2Act [53] also769

used this initial grid for their predictions, so we take their reported numbers directly. In ATM [54],770

the model is trained to take in any point location (including the uniform grid). Seer [67] is a video771

prediction model, so any queries can be applied to its output and tracked by CoTracker.772
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1. MSE: We take normalized track predictions in the range [−1, 1] and compute MSE between773

predicted (x, y) values for each point and the corresponding ground-truth point from CoTracker.774

2. Pixel Accuracy: We measure the (normalized) percentage of predictions that are pixel-perfect775

compared to ground-truth.776

3. ∆AUC: This metric was originally introduced by works presenting point tracking [38, 36] and777

later used for track prediction [53]. The metric is computed as follows. Let δxt be the fraction of778

point predictions that are within a threshold pixel distance of x of their ground truth in a time-step779

t ∈ [0, H]. Following [53], we report the area under the curve ∆ with δxt by varying x from 1 to780

N = 10 and taking the average across the prediction horizon H i.e. ∆ =
(∑H

t=1

∑N
x=1 δ

x
t

)
/H .781

Hence, ∆ is normalized to [0, 1], with higher values corresponding to better predictions.782

Video Prediction Metrics – We use three standard metrics for measuring generated video quality:783

Learned Perceptual Image Patch Similarity (LPIPS), Structural Similarity Index (SSIM), and Peak784

Signal-to-Noise Ratio (PSNR). These metrics are defined as follows:785

LPIPS(x, x̂) :=
1

HW

∑
h,w

||ϕ(x)hw − ϕ(x̂)hw||22

SSIM(x, x̂) :=
(2µxµx̂+ c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)

PSNR(x, x̂) := 10 log10

(
MAX2

I
1

HW

∑
h,w(xhw − x̂hw)2

)

where xhw and x̂hw are ground truth and predicted images respectively, ϕ denotes a pretrained deep786

network, µ and σ represent mean and variance, c1 and c2 are constants for numerical stability, and787

MAX is the maximum possible pixel value. Note that Frechet Inception Distance (FID) and Frechet788

Video Distance (FVD) are not meaningful metrics in our scenario due to a mismatch between the789

input image size for the Inception network and the videos produced by AVDC.790

D.4 Preprocessing791

We unfold (in time) a length-τ video o ∈ Rτ×H×W×3 into τ length-T windows to be tracked by792

CoTracker [36]. For each window, we initialize a uniform N = 20× 20 grid of query points to be793

tracked through the T frames of the window. Thus, we obtain an output κ0:τ ∈ Rτ×T×N×2, where794

κt are the tracks corresponding to the grid initialized in ot and tracked through ot:t+T .795

Note that tracks corresponding to nearby windows overlap in time, but correspond to different796

initial query points, since we re-initialize in every frame. This is in contrast to the way tracks are797

preprocessed in ATM [54], where the points are initialized once (in the last frame) and the same points798

are tracked through the entire video. Our preprocessing strategy is T× more compute-intensive, but799

prevents issues of prolonged occlusion and gracefully handles moving/panning cameras, which is800

important when using a wrist camera, for example.801

Once tracks are obtained from CoTracker, we treat them as ground-truth targets for the rest of the802

pipeline. For training stability, we normalize tracks from pixel coordinates to the range [−1, 1]. To803

ensure tracks correspond to the same length of time, we interpolate tracks in time on same datasets804

that have a different sampling frequency. On LIBERO, Real robot tasks, and Something-Someting805

v2 we use a 16-frame true horizon, corresponding to 0.8 seconds (at 20Hz). For BridgeData v2, the806

observation frequency is 5Hz so we interpolate a 4-frame horizon to 16 using a cubic spline. For807

real-world human data, we use 8 frames, since human execution is roughly 2× that of the robot. In808

Appendix E we examine the effect of changing prediction horizon on downstream policy performance809

and find that 16 frames (0.8s) lead to the best result. This echoes findings in [54]. Before tokenizing,810

we compute instantaneous velocities through simple differencing in the time dimension. Since the811

initial queries are always the same, velocities contain the same information and reduce the sequence812

length slightly.813
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D.5 Training Details814

We present detailed hyperparameter choices in Table 10 and a high-level overview of AMPLIFY815

training in Algorithm 1. All three components were trained on a single GPU (either RTX 6000 or816

L40S, depending on availability). We report the default number of epochs used for experiments. For817

the LIBERO benchmark, we trained the motion tokenizer for approximately 50,000 gradient steps,818

the forward dynamics model for 25,000 gradient steps, and the inverse dynamics model for 75,000819

gradient steps. For Something-Something v2, we trained the motion tokenizer for 32,000 gradient820

steps and the forward dynamics model for 22,000 gradient steps. For BridgeData, we trained the821

motion tokenizer for 20,000 gradient steps and the forward dynamics model for 175,000 gradient822

steps. Each gradient step is counted as the accumulated gradients over 4 backward passes to simulate823

the reported batch size.824

Table 10: Hyperparameters for Motion Tokenizer, Forward Dynamics, and Inverse Dynamics model training.
Hyperparameter Motion Tokenizer Forward Dynamics Inverse Dynamics
number of parameters 31M 70M 57M
epochs 100 100 250
batch size 256 256 256
gradient accumulation 4 4 4
learning rate 1e-4 1e-4 1e-4
optimizer AdamW AdamW AdamW
image size - 128× 128 128× 128
number of points N - 400 -
track prediction horizon T - 16 -
decoder local window size W - 15 -
number of heads 8 8 8
number of layers 2 8 4
hidden dimension 768 768 768
dropout 0.1 0.1 0.1
FSQ implicit codebook size - 2048 -
Action loss discount γ - - 0.99

Video Prediction – To demonstrate the utility of our method beyond robotics, we extend the AVDC825

[44] video generation model by conditioning it on the motion tokens produced by the forward826

dynamics model. These motion tokens serve as a conditioning signal that guides video prediction827

based on the expected dynamics. To condition the video generation model, motion tokens generated828

by the forward dynamics model are concatenated with text tokens along the sequence dimension829

before features before being pooled by a Perceiver [94] resampler in AVDC’s UNet. To ensure830

efficient batching during training and inference, the concatenated sequences are padded to a fixed831

sequence length. During training, the video prediction model is conditioned on motion tokens832

obtained directly from the motion tokenizer. This direct conditioning allows the model to learn833

directly from “ground truth" motion tokens, increasing training efficiency.834

At test time, a new sequence of motion tokens is sampled every T timesteps. This sampling835

strategy allows the model to generate a complete trajectory by sequentially updating the conditioning836

information over time. The model is conditioned on the outputs of the forward dynamics model837

during inference, similarly to AMPLIFY’s inverse dynamics model. We find that track-conditioned838

video generation leverages the strength of our forward dynamics model to guide the video generation839

process, thus improving the quality and coherence of the generated video sequences.840

E Ablation Studies841

We conduct an ablation analysis to study the effect of various design choices in our architecture. All842

evaluations are performed on LIBERO-Long, which is the most challenging subset of LIBERO due843

to it’s long horizon (up to 500+ steps) compared to the other tasks.844
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Motion Tokenization – We examine the effect of a number of architectural choices in the Motion845

Tokenizaton stage, using the ∆AUC as the principal metric, summarized in Table 11.846

• Attention Masks: We consider three attention masks in the encoder: per-timestep tokenization,847

where there is no information transfer across time; causal attention, where information flows one848

way in time, and no mask. We observe a significant benefit from attention across time, but marginal849

difference between causal and full attention (we opt to use causal for efficiency).850

• Decoder Output Loss: We consider two options for decoder output loss: MSE, and Local Window851

Classification. Under the MSE setup, the decoder is configured to directly output (normalized) pixel852

coordinates, which are regressed to the targets from CoTracker. With Local Window Classification,853

the decoder instead outputs classification logits over W 2 = 225 classes for each point for each854

timestep. Each class corresponds to a pixel in a the local W 2 window of pixels centered around855

the previous point in the current timestep. For example, the class corresponding to the middle856

of the window predicts a velocity (0,0), whereas the class corresponding to the top-right pixel is857

(7,7). The size of the window can be inferred from the data and leads to a bias for local motion.858

We observe that Local Window Classification models tracks better and leads to more accurate859

predictions. Qualitatively, we notice that MSE tends to lead to blurrier predictions and tends860

towards 0-movement more. We suspect this is because the classification objective can model861

multi-modal distributions, whereas MSE simply regresses to the mean.862

• Joint Tokenization: We study whether conditioning track tokenization on the image helps recon-863

struction by conditioning the encoder on both image tokens (same as forward dynamics) and the864

input velocities. Performance dropped slightly, though not much difference was apparent.865

• Prediction Horizon: We vary the prediction horizon from 4 to 16 timesteps and find that recon-866

structing tracks over a shorter horizon is easier. This is expected, as there is less uncertainty with867

shorter horizons. We observe a similar case when trainig forward dynamics. However, the inverse868

dynamics model has the opposite trend, since longer horizon predictions are ultimately more useful869

for action inference. As a result, we choose to use a horizon of 16 in our final model, as we are870

ultimately interested in downstream policy performance.871

• Model Dimensions: Finally, we examine FSQ (effective) codebook size, code sequence length,872

and hidden dimension of the transformers. We find that an effective codebook size of 2048, a latent873

sequence length of 16, and a hidden dimension of 768 perform marginally better.874

Forward Dynamics – We study design choices in the forward dynamics model, which predicts875

tokenized trajectories from observations. We evaluate models based on ∆AUC and pixel accuracy,876

summarized in Table 12.877

• Prediction Horizon: Similar to motion tokenization, we observe that shorter prediction horizons878

improve accuracy. Predicting only 4 steps ahead achieves the highest accuracy, while 16-step879

prediction is substantially harder. We nevertheless use 16 in the final model to match the inverse880

dynamics setup.881

• Vision Encoder Architecture: We evaluate multiple vision encoders. Interestingly, despite the882

popularity of larger and pretrained architectures (e.g., DINOv2 [95], [96]), ResNet-18 [97] performs883

competitively, with minimal drop in performance, making it a computationally efficient default884

choice.885

• Token Pooling Strategy: We compare using CLS tokens vs. patch tokens from ResNet-18 as inputs886

to the transformer. Patch tokens (i.e., per-patch embeddings) slightly underperform CLS pooling,887

but are preferable due to their richer spatial structure and compatibility with other modules.888

• Transformer Depth: We evaluate transformer depth and find that using 4 layers performs slightly889

better than 8. This may be due to overfitting or optimization instability with deeper models on890

limited data.891

• Frozen vs. Fine-tuned Vision Encoder: We find no benefit to fine-tuning the ResNet encoder892

during forward dynamics training, so we freeze it to save compute and stabilize training.893

Inverse Dynamics – Finally, we investigate the impact of the action prediction horizon and choice of894

output head in the inverse dynamics module, using downstream task success rate as the evaluation895

metric. Results are shown in Table 13.896
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Table 11: Motion Tokenizer Ablations.

Ablation Factor Configuration Metric Performance

Attention Mask
Per-Timestep ∆AUC 0.877

Attention Mask Causal ∆AUC 0.919
Full ∆AUC 0.918

Decoder Output Loss MSE Loss ∆AUC 0.883
Local Window Classification Loss ∆AUC 0.919

Joint Tokenization Tracks Only ∆AUC 0.929
Tracks + Image ∆AUC 0.926

Prediction Horizon
4 ∆AUC 0.985
8 ∆AUC 0.961
16 ∆AUC 0.919

Codebook Size
512 ∆AUC 0.912

Codebook Size 1024 ∆AUC 0.919
2048 ∆AUC 0.921

Hidden Dimension

128 ∆AUC 0.897
256 ∆AUC 0.909

Hidden Dimension 384 ∆AUC 0.911
512 ∆AUC 0.914
768 ∆AUC 0.919
1024 ∆AUC 0.917

Code Sequence Length

2 ∆AUC 0.853
4 ∆AUC 0.877

Code Sequence Length 8 ∆AUC 0.909
16 ∆AUC 0.919
32 ∆AUC 0.893

Table 12: Forward Dynamics Ablations.

Ablation Factor Configuration Metric Performance

Prediction Horizon
4 Pixel Accuracy 0.757

Prediction Horizon 8 Pixel Accuracy 0.678
16 Pixel Accuracy 0.613

Vision Encoder
ResNet-18 Pixel Accuracy 0.613

Vision Encoder ResNet-50 Pixel Accuracy 0.621
DINOv2 Pixel Accuracy 0.621
ViT Pixel Accuracy 0.614

Token Pooling Strategy Patch Tokens Pixel Accuracy 0.613
CLS Token Pixel Accuracy 0.621

Transformer Depth 4 Layers ∆AUC 0.930
8 Layers ∆AUC 0.929

Vision Encoder Tuning Frozen ∆AUC 0.929
Fine-tuned ∆AUC 0.929

Table 13: Inverse Dynamics Ablations.

Ablation Factor Configuration Metric Performance

Prediction Horizon
4 Success Rate 0.36

Prediction Horizon 8 Success Rate 0.64
16 Success Rate 0.75

Action Head
Gaussian (Transformer, MLP) Success Rate 0.74

Action Head Diffusion (U-Net) Success Rate 0.74
Flow Matching (DiT) Success Rate 0.73
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• Prediction Horizon: We observe a consistent improvement in task success as we increase the897

action prediction horizon. This makes intuitive sense: longer horizons provide more context for898

disambiguating latent trajectories and allow the inverse dynamics model to recover the intended899

actions more reliably. We thus adopt a 16-step horizon in our final setup.900

• Action Head: We experiment with three different action heads. (1) a Gaussian Action head,901

consisting of a transformer decoder and MLP projection to output mean and log-std for a Gaussian902

Policy, trained with negatice likelihood loss as described in the main paper; (2) a Diffusion Policy903

head with U-net architecture (recommended for simple tasks), which we use in the real world setup904

for fair comparison. (3) A Flow Matching [98] head with the cross-attention DiT architecture from905

GR00T N1 [99], with optimal transport coupling and 10 integration steps with a midpoint ODE906

solver for inference. Our evaluations did not highlight significant differences in performance, so907

we opted for the simplest Gaussian Policy for the main results. This follows [62], who similarly908

found that a complex action head did not help on LIBERO tasks.909

F Additional Results910

F.1 Video Scaling Experiment911

Table 14: We scale the amount of video data used AMPLIFY, showing that performance improves as we scale
the amount of action-free video data. Note that these policies are trained on only 2 action-annotated trajectories.

# Videos 0 2 5 10 50

Ours 0.00 0.12 0.34 0.23 0.55

In order to investigate the impact of abundant action-free video data on policy performance, we912

conducted an experiment on the LIBERO-Object subset. In this setup, we vary the number of videos913

used to train the forward dynamics model while keeping the action-annotated dataset extremely914

limited (only 2 trajectories). The goal is to simulate a realistic scenario where acquiring action labels915

is expensive, yet large-scale video data is readily available.916

Specifically, we trained the forward dynamics model using 0, 2, 5, 10, and 50 action-free video917

clips of LIBERO rollouts. Subsequently, the inverse dynamics model was trained using the outputs918

of the forward dynamics model as described in Section 2.3. The results summarized in Table 14919

demonstrate that policy performance generally improves as the volume of video data increases. It is920

worth noting that while the overall trend is positive, there is a non-monotonic behavior (e.g., a drop921

from 0.34 with 5 videos to 0.23 with 10 videos). This variation could be due to inherent stochasticity922

in training or differences in video content quality. In addition, since all of the demonstrations are923

likely similar, the forward dynamics model may not gain significantly more information as the number924

of demonstrations increase. Overall, these findings suggest that augmenting limited action-annotated925

data with large-scale, action-free video data can effectively improve the learned forward dynamics,926

which in turn improves policy performance. However, more thorough investigation is needed before927

drawing definitive conclusions.928

F.2 Detailed Tables of Main Results929

We provide more detailed versions of tables provided in the main body.930

Table 15: Prediction Performance on Track Prediction Metrics on all LIBERO subsets.

Method Metric
LIBERO

90
LIBERO

Long
LIBERO
Object

LIBERO
Spatial

LIBERO
Goal Aggregate

ATM [54]
MSE 0.012 0.008 0.008 0.074 0.009 0.022

ATM [54] ∆AUC 0.799 0.803 0.782 0.693 0.757 0.767
Pixel Accuracy 0.339 0.349 0.222 0.146 0.195 0.250

AMPLIFY
MSE 0.004 0.002 0.001 0.019 0.002 0.006
∆AUC 0.892 0.921 0.937 0.904 0.914 0.913
Pixel Accuracy 0.612 0.633 0.656 0.613 0.630 0.629
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Table 16: Few-shot Learning from Limited Action Data on LIBERO.
Method LIBERO-Long LIBERO-90 LIBERO-Object LIBERO-Spatial LIBERO-Goal

# Demos 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10

ATM [54] 0.16 0.37 0.39 – – – 0.51 0.58 0.68 0.51 0.66 0.68 0.38 0.64 0.77
AMPLIFY (inverse only) 0.00 0.04 0.07 0.06 0.18 0.28 0.04 0.09 0.38 0.17 0.16 0.37 0.00 0.04 0.16
AMPLIFY 0.55 0.58 0.62 0.47 0.56 0.66 0.73 0.67 0.85 0.71 0.77 0.69 0.57 0.77 0.75

Table 17: Real-World Task Performance with Partial and Full Success Rates.

Method Open Box & Place
Eggplant - Partial

Open Box & Place
Eggplant - Full

Stack Cups
Partial

Stack Cups
Full Place Cube Avg

# Demos 5 10 All 5 10 All 5 10 All 5 10 All 5 10 All

DP [100] 0.5 0.2 0.3 0.1 0.2 0.2 0.8 0.8 0.9 0.3 0.5 0.5 0.6 0.5 0.9 0.49
AMPLIFY 0.1 0.4 0.5 0.1 0.3 0.4 0.8 0.9 1.0 0.3 0.6 1.0 0.7 0.9 0.9 0.59

F.3 Qualitative Results931

We provide qualitative results of predictions from AMPLIFY and samples from the video prediction932

model conditioned on predicted tracks. Within each frame, yellow indicates points at the current time,933

and red indicates the points in the future. Model outputs are for the full 400-point grid. To reduce934

clutter, however, we do not visualize points that are predicted to have no motion.935

28



Figure 8: Track Predictions from AMPLIFY on Real-World Robot Data.
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Figure 9: Track Predictions from AMPLIFY on Real-World Human Data.
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Figure 10: Video Predictions from AVDC [44] conditioned on AMPLIFY, trained on Bridge Data.
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Figure 11: Track Predictions from AMPLIFY on Bridge Data.
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